روش های گالرکین ناپیوسته ی موضعی در حل برخی از معادلات تحولی کسری مکانی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
- نویسنده صفورا نوری
- استاد راهنما رضا مختاری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
روش گالرکین ناپیوسته رده ای از روش عنصر متناهی است که درآن از توابع پایه ی به طور کامل ناپیوسته استفاده می شود. در این روش اغلب از توابع چندجمله ای قطعه ای به عنوان توابع پایه بهره می گیرد. یک بهبود روش گارکین ناپیوسته، روش گالرکین ناپیوسته ی موضعی است. ایده ی روش گالرکین ناپیوسته ی موضعی بازنویسی مناسب معادله با مشتقات پاره ای و تبدیل آن به یک دستگاه مرتبه اول است و پس از آن اعمال روش گالرکین ناپیوسته به روی دستگاه معادله است. حسابان کسری نامی برای تئوری انتگرال ها و مشتق ها از هر مرتبه دلخواه حقیقی یا مختلط است. معادلات از نوع کسری بسیار مورد توجه قرار گرفته اند. در این پایان نامه ابتدا مفاهیم پایه از قبیل فضای توابع، حسابان کسری و... بیان می شود. سپس روش های گالرکین ناپیوسته و گالرکین ناپیوسته موضعی در قالب مثال توضیح داده می شود. پس از آن پیاده سازی روش گالرکین ناپیوسته موضعی را برای معادلات انتشار کسری مکانی با مشتق کسری ریمان لیوویل و معادلات انتقال-انتشار کسری-مکانی با عملگر لاپلاس کسری، توضیح داده می شود و در هر مورد به طور عددی و تحلیلی پایداری و دقت روش مورد بررسی قرار داده می شود.
منابع مشابه
حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی
در این مقاله، روش گالرکین ناپیوستهی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبهی کسری را در حالت کلی به کار میبریم. در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر میسازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...
متن کاملروش گالرکین ناپیوسته موضعی در حل برخی معادلات تحولی کسری-زمانی
حسابان کسری پیشینه ای حدود سیصد سال دارد، با این وجود توسعه و آنالیز حسابان کسری و معادلات دیفرانسیل کسری به رشد کافی نرسیده است که بتوان آن را به حسابان کلاسیک وابسته دانست. در طول دهه گذشته، تغییراتی در آن صورت گرفته است که حسابان کسری را برای دامنه وسیعی از پدیده_های غیرکلاسیک در علوم کاربردی و مهندسی شفاف تر ساخته است. برای بیان نمونه ای از این تغییرات می توان به مدلی از فرایند انتقال غیرعا...
15 صفحه اولروش گالرکین ناپیوسته برای حل معادلات ماکسول
چکیده همواره در علوم مختلف با معادلاتی روبرو هستیم که در بسیاری از موارد یافتن جواب تحلیلی برای آن ها پیچیده و گاهی حتی غیر ممکن است. لذا در این موارد سعی می شود که با استفاده از روش های عددی مناسب تقریب نزدیکی از جواب واقعی را به دست آورند. در این میان روش های گالرکین ناپیوسته برای حل معادلات دیفرانسیل مورد استفاده قرار می گیرند. این روش ها دارای کارایی و دقت کافی به همراه سرعت همگرایی بالا م...
15 صفحه اولبرخی از روش های پتروف-گالرکین موضعی در حل مسائل انتشار-انتقال کسری
در این پایان نامه برخی از روش های پتروف-گالرکین موضعی برای حل معادلات انتشار-انتقال کسری به کار برده شده است. در این روش ها از تقریب کمترین مربعات متحرک و درونیاب کریجینگ متحرک استفاده شده است و در مقایسه با روش های موجود تقریب های بهتری به دست آمده است. هم چنین برای حل این معادلات از برخی روش های پتروف-گالرکین موضعی مستقیم استفاده شد، که بهبودی نتایج را نتیجه داد.
آنالیز روش گالرکین ناپیوسته موضعی برای حل عددی معادلات دیفرانسیل با مشتقات جزئی از مرتبه کسری
مه به آنالیز روش گالرکین ناپیوسته موضعی برای حل عددی معادلات دیفرانسیل با مشتقات ?? این پایان پردازد. ?? جزئی از مرتبه کسری می در فصل اول ما به بیان برخی مقدمات حسابان کسری شامل تعاریف مشتق کسری، انتگرال کسری و برخی های اجزای محدود و گالرکین بوده که نحوه انتخاب ?? پردازیم. فصل دوم شامل روش ?? فضاهای آنالیزی می شود. همچنین در این فصل به حل معادله گرما با روش گالرکین و نیز به ?? ای در آن بحث ...
روش گالرکین ناپیوسته برای حل معادلات دو گانه همساز
هدف ما در این پایان نامه طراحی و تحلیل روشی عناصر متناهی با عنوان گالرکین ناپیوسته جریمه درونی متقارن (sip-dg) برای مسائل مقدار مرزی شامل عملگر دوگانه همساز می باشد . این مسائل که با شرایط مرزی دیریکله و نیومن ارائه می شوند ، کاربردی گسترده در علوم مختلف به خصوص مکانیک ، عمران و الکترو مغناطیس دارند . روش sip-dg ارائه شده در این پایان نامه تعمیم روش معرفی شده برای مسائل بیضوی در[2] و [3]می -...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023